Part Number Hot Search : 
M7R76FAJ SBP1050 C574P MC933 A1101 LTF2012D A1267 00211
Product Description
Full Text Search
 

To Download IRFR4510PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  05/02/12 www.irf.com 1 hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g gds gate drain source  97784 IRFR4510PBF irfu4510pbf dpak IRFR4510PBF ipak irfu4510pbf notes   through  are on page 11  
                s d g d s g d v dss 100v r ds(on) typ. 11.1m ? max. 13.9m ? i d (silicon limited) 63a i d (package limited) 56a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, vgs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r ?  ??? 1.05 r ?  ??? 50 r ? max. 63 45 252 56 0.95 a 127 see fig. 14, 15, 22a, 22b 143 -55 to + 175 20

 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.10 ??? v/c r ds(on) static drain-to-source on-resistance ??? 11.1 13.9 m ? v gs( th) gate threshold voltage 2.0 3.0 4.0 v i dss drain-to-source leakage current ??? ??? 20 ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 r g(int) internal gate resistance ??? 0.61 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 62 ??? ??? s q g total gate charge ??? 54 81 q gs gate-to-source charge ??? 14 ??? q gd gate-to-drain ("miller") charge ??? 15 ??? q sync total gate charge sync. (q g - q gd ) ??? 39 ??? t d(on) turn-on delay time ??? 18 ??? t r rise time ??? 42 ??? t d(off) turn-off delay time ??? 42 ??? t f fall time ??? 34 ??? c iss input capacitance ??? 3031 ??? c oss output capacitance ??? 213 ??? c rss reverse transfer capacitance ??? 104 ??? c oss eff. (er) effective output capacitance (energy related) ??? 255 ??? c oss eff. (tr) effective output capacitance (time related) ??? 478 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode)  v sd diode forward voltage ??? ??? 1.3 v dv/dt peak diode recovery ??? 7.0 ??? v/ns t rr reverse recovery time ??? 34 ??? t j = 25c v r = 86v ??? 39 ??? t j = 125c i f = 38a q rr reverse recovery charge ??? 47 ??? t j = 25c di/dt = 100a/ s  ??? 61 ??? t j = 125c i rrm reverse recovery current ??? 2.4 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) t j = 175c, i s = 38a, v ds = 100v  conditions v ds = 25v, i d = 38a i d = 38a v gs = 20v v gs = -20v mosfet symbol r g = 7.5 ? v gs = 10v  v dd = 65v showing the v ds = 50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  v gs = 0v, v ds = 0v to 80v  t j = 25c, i s = 38a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 38a  v ds = v gs , i d = 100 a v ds = 100v, v gs = 0v i d = 38a, v ds =0v, v gs = 10v ??? ??? ??? ??? 56 252 ns ns nc pf a v ds = 100v, v gs = 0v, t j = 125c a na nc i d = 38a

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 6.0v 5.5v 5.0v 4.75v 4.5v bottom 4.25v ? 60 s pulse width tj = 25c 4.25v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.25v ? 60 s pulse width tj = 175c vgs top 15v 10v 6.0v 5.5v 5.0v 4.75v 4.5v bottom 4.25v 2 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v ? 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.2 0.6 0.6 1.0 1.0 1.4 1.4 1.8 1.8 2.2 2.2 2.6 0.2 0.6 1.0 1.4 1.8 2.2 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 38a v gs = 10v 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 10203040506070 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 38a

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc limited by package 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma -20 0 20 40 60 80 100 120 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.7a 12a bottom 38a

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ?? i (sec) 0.3442 0.001031 0.0679 0.000061 0.6371 0.005883 ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ? ? c ci i ? ri ci= ? i ? ri 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 125 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 38a

 6 www.irf.com  
 
   fig 16. threshold voltage vs. temperature  
    

 
    
    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a i d = 250 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 5 10 15 20 i r r m ( a ) i f = 25a v r = 86v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 5 10 15 20 i r r m ( a ) i f = 38a v r = 86v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( n c ) i f = 25a v r = 86v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 350 q r r ( n c ) i f = 38a v r = 86v t j = 25c t j = 125c

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21.    
 
  for n-channel hexfet   power mosfets 
 
  ?????  
 
  ????   
  ????  

 
   
  p.w. period di/dt diode recovery dv/dt ripple ? 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
      + - + + + - - -        ???      ??? 
 !
"#"" ???       $
 %% ??? "#""&#        d.u.t. v ds i d i g 3ma v gs .3 ? f 50k ? .2 ? f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( ???? )  $
  ???????         + -    

 8 www.irf.com 
  
 
  

 

 
    
        
        !"# " $ %
  &  '(   )   
 *+ *,)-  .& /0  1  2  ,)  1  
  &   .
 3   &    1  &)  2  &   
    
   &) 2    
  &    1   &   .
 3     !"# " $ *+ *,)- 45"6+  7 +5 -,"8"  1  2  ,)  .& 9.)   & .
 : /0 note: for the most current drawing please refer to ir website at http://www.irf.com/package/

 www.irf.com 9 
  
  

 

 
  
       
 
  

    
     

    

  
 
       
   

   
 
    !"#$%$"  &$$' (  )'' *#$+' '"%%$,-./.$0*%#* 1 +  ) )
   2345 note: for the most current drawing please refer to ir website at http://www.irf.com/package/

 10 www.irf.com 
     

 

 
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch note: for the most current drawing please refer to ir website at http://www.irf.com/package/

 www.irf.com 11 data and specifications subject to change without notice ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 05/2012 ? qualification standards can be found at international rectifier?s web site http://www.irf.com/product-info/reliability ?? higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ??? applicable version of jedec standard at the time of product release. msl 1 (per jedec j-std-020d ??? ) i-pak not applicable rohs compliant moisture sensitivity level d-pak qualification information ? qualification level industrial ?? (per jedec jesd47f ??? guidelines) yes comments: this family of products has passed jedec?s industrial qualification. ir?s consumer qualification level is granted by extension of the higher industrial level. 
  repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.18mh r g = 50 ? , i as = 38a, v gs =10v. part not recommended for use above this value.  i sd ? 38a, di/dt ? 2031a/ s, v dd ?? v (br)dss , t j ? 175c.  pulse width ? 400 s; duty cycle ? 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.   ?     *    !" note form quantity IRFR4510PBF d-pak tube/bulk 75 irfr4510trpbf d-pak tape and reel 2000 irfu4510pbf i-pak tube/bulk 75 orderable part number package type standard pack


▲Up To Search▲   

 
Price & Availability of IRFR4510PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X